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ABSTRACT

Evaluation of a real function f on an interval X using interval arithmetic V.
yields an interval extension F(X) containing the range R(f;X) of f on X.
Unfortunately, F(X) is sometimes excessively wider than R(f;X). Evaluation of
f £ C' by interval differentiation arithmetic gives F(X) and the extension F'(X) " Z.#':

of f' on X. If F'(X) 0 (or F'(X) 4 0), then f is monotone on X - [a,b], and
R(f;X) - [f(a),f(b)] (or R(f;X) = [f(b),f(a)]), giving improved bounds for
R(f;X). If 0 e int(F'(X)), then X is divided into subintervals on which f is
either guaranteed to be monotone or has possible extremal points. .

A Pascal-SC program for this simple algorithm is given, and numerical J".

results are presented. As a byproduct of the computation, possible extremal
points of f are isolated. >
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a SIGNIFICANCE AND EXPLANATION

Interval computation provides ways to obtain inclusions for the range of a
function on an interval automatically, taking into account the effects of
roundoff error in actual computer evaluation of the function. However, simply I"plugging in an interval" for the independent variable and using interval
arithmetic to evaluate the function often leads to inclusions of the range of a
function which are too large by orders of magnitude, and useless for practical
purposes. Because of this failure of naive application of interval methods, a
number of efficient methods for calculating an inclusion of the range of a
function have been developed, most of which are based on the use of a mean-value
or centered form for the interval extension of a function. The algorithm
presented in this paper takes a different approach, based on the fact that the
range of a monotone function on an interval can be computed by evaluating the
function at the endpoints of the interval (with directed rounding to insure
inclusion). Interval differentiation arithmetic is used to evaluate an interval
inclusion F'(X) of the range of the derivative of the function on the interval
X. Even though this inclusion may be crude, the function is guaranteed to be
monotone on X if 0 is not contained in the interior of F'(X), and hence its
range can be calculated accurately. If 0 is in the interior of F'(X), then X is
subdivided into subintervals, on which the function is either monotone or
possibly has an extremal point. By taking the interval hull of the ranges of
the function on all subintervals, an improved inclusion of the range of the
function is obtained. As a byproduct of the computation, possible extremal
points of the function are isolated in the subintervals on which 0 is in the
interior of the interval extension of the derivative of the function. If there
are no such intervals, then the function is piecewise monotone, and an accurate
inclusion of its range is obtained by the algorithm.

A Pascal-SC program is given which implements the algorithm, and numerical
results are presented. The text of this report was presented as an invited
address at the International Interval Symposium 1985, held at the University of i
Freiburg, Germany, on September 23-26, 1985.
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Improved Interval Bounds for Ranges of Functions t &

L. B. Ral g

1. Ranqes of functions. The range of a real function f:D C R + R on a set X C D is

R(f;X) {f(x) j x e X}. (1.1)

In case X - [a,b] is a closed, bounded interval and f is continuous, then R(f;X) will also

be an interval of the same kind. Closed, bounded intervals will be referred to simply as L i
intervals, and the set of such intervals will be denoted by IR.

A fundamental problem of interval analysis is the calculation of R(fUX) or at least a

good approximation to it. If f is defined in terms of arithmetic operations and functions

with known interval extensions, then straightforward use of interval computation gives an ...

interval extension F of f such that

R(f;X) C F(X) (1.2)

for X C D. This calculation has the advantage of being completely automatic, and does not

require knowledge of special properties of f. Unfortunately, F(X) can be such a gross

overestimation of R(fX) in certain cases that it is useless for practical purposes.-.-

Furthermore, the quality of F(X) as an approximation to R(f;X) is generally unknown. k

Sponsored by the United States Army under Contract No. DAAG29-80-C-O041.
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A number of methods have been developed for obtaining better approximations to R(f;X),

starting with the work of Moore [1]. The recent book by Ratschek and Rokne [5) describes a

number of these techniques, and gives a substantial bibliography. Most of the apprc tches

to this problem are based on transformation of F, usually into centered or mean-valu orma

[1], [5]. The method given in this paper applied to continuously differentiable tions

f, and makes use of information about the monotonicity of f obtained by the p. a of . %ft.

automatic differentiation [2].

2. Monotone functions. If the function f is nondecreasing on X, then R(f ) is e .%

simply

-.. ft.;. f .. .

R(f;X) = [f(a), f(b)]. (2.1)

Similarly, if f is nonincreasing on X, then

R(f;X) [f(b), f(a)]. (2.2) -

Thus, the range of monotone functions can be determined by calculating only two function

values. In actual practice, of course, downward rounding of the lower endpoint and upward

rounding of the upper endpoint gives an interval inclusion of R(f;X) which is slightly .' .,

wider than the exact range. For the time being, it will be assumed that function values

are computed exactly. ft

A sufficient condition for (2.1) to hold for differentiable f is that t ". " •

f'(x) 0, a 4 x C b, (2.3)

and similarly (2.2) holds if f'(x) (0 on X. Furthermore, suppose that f is continuously

differentiable, and F' denotes an interval extension of f' obtained by interval

computation. If F'(X) • 0 (FI(X) r 0), it follows that f is nondecreasing (nonincreasing) ..

on X, and R(f;X) can be calculated directly by (2.1) or (2.2), respectively.

-2-
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The additional information about the derivative of f needed above can also be obtained

automatically. The values of F(X) and F'(X) can be computed by using interval .

differentiation arithmetic, as described below. All that is required is a formula or

subroutine for f; no symbolic differentiation is necessary. If necessary, a bisection
* ~,. . ,5 .*#

procedure can be applied to the interval X to find subintervals on which f can be

guaranteed to be monotone. The resulting algorithm provides either the exact value of -

R(f;X), or else an inclusion of R(f;X) which is better in general than F(X).

3. Real differentiation arithmetic. It is convenient to define interval

differentiation arithmetic as an extension of real differentiation arithmetic. This

arithmetic can be used to calculate the values of functions and their derivatives .-

automatically, without symbolics or numerical approximations [41. Like interval

arithmetic, real differentiation arithmetic is an ordered-pair arithmetic, with elements U

= (uu'), V = (v,v'), ... R
2
. The rules for this arithmetic are:

U + V (uu') + (v,v') (u + v, u'+ v'), (3.1)

U - V = (u,u') - (v,v') = (u - v, u' - v'), (3.2)

U.V = (u,u').(v,v') = (u.v, u.v' + v.u'), (3.3)

U/V = (u,u')/(v,v') = (u/v, (u' - (u/v).v')/v), v p 0. (3.4)

The arithmetic defined in this way forms a division ring with identity, and will be denoted.,

by D. If the first element of each operand pair is interpreted as a function value, and . .

the second as a derivative value, then the first element of the result corresponds to the .

evaluation of the operation, and the second to the evaluation of its derivative, according "

to the well-known rules of calculus. If real numbers c are identified with the pairs

(c,O), then it follows from the chain rule of calculus that

f((x,1)) (f(x), f'(x)), (3.5)

that is, the rules of differentiation arithmetic will automatically give both the value and

-3-
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the value of the derivative of a rational function f. More generally, the chain rule gives

f((u,u')) = (f(u), u'.f'(u)), (3.6)

which allows the definition of standard functions in D, for example,

u 0.

e
U 

= e(u
'
u') = u

, 
u'oeu), (3.7)

in U = ln(u,u') = Cn u, u'/u), (3.8)

and so on. The combination of arithmetic operations and standard functions will be called

a computational system for differentiation arithmetic. It is simple to program such a

computational system, particulary in a language such as Pascal-SC, which permits definition ...

of operators and functions for various data types [3].

4. Interval differentiation arithmetic. Interval differentiation arithmetic is

defined by the same rules as real differentiation arithmetic, starting with pairs of

intervals instead of real numbers, and using interval arithmetic instead of real arithmetic

inside the parentheses on the right sides of (3.1)-(3.3). With interval extensions of

standard functions, the definitions (3.7), (3.8) and so on are used to construct a

computational system for interval differentiation arithmetic. Once again, such a system is

easy to program in Pascal-SC, which supports interval arithmetic as well as operator and S
function definitions for various data types [3].

The analog to (3.5) in interval differentiation arithmetic is

F((X,(1,1])) = (F(X), F'(X)). (4.1) •

Thus, by a direct evaluation process in this arithmetic, interval inclusions F(X) of R(f;X) I.-

and F'(X) of R(f';X) can both be obtained automatically. Here, even if F'(X) is a crude

approxumation to the range of f' on X, the conditions F'(X) > 0 or F'(X) < 0 are sufficient

to guarantee the monotonicity of f, and if f is monotone, then its range can be calculated

--..
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exactly by (2.1) or (2.2). This observation is the basis of the algorithm described in the I

next section. %

5. An algorithm for range calculation. Of course, if the calculation of F'(X) shows

that f is monotone on the entire interval X, then R(fiX) can be calculated at once.

Otherwise, X will be partitioned into subinterval, and either R(f;x) or an approximation to

it will be constructed. Let a given list of n subintervals of X be denoted by Ln - {11,
Lp. -

X2, , Xn} , and suppose that R C R(f;X) is known. On each subinterval Xi, either F(Xi) C

R, in which case R(f;Xi) makes no additional contribution to RlfX), or f is monotone, in

which case its range can be computed directly and R updated, or else 0 is an interior point

of F'(Xi), in which case Xi may contain a critical point of f. In the latter case, Xi can

be bisected and the resulting subintervals put on a now list for further examination. In

order for the algorithm to terminate in a finite number of steps, a lower bound 6 is put on

the widths of the subintervals to be considered, and an upper bound N is placed on the

number of subintervals to be saved for further examination. For convenience, if Y,Z are

intervals, then Y ++ Z will denote the interval hull of Y and Z, that is, the smallest

interval which contains both Y and Z.

The algorithm consists of the following steps: ....

I*. (Initialization) Take X : X, L I {X1), R :- (f(x),f(x)], where x is some

point in X.

20. (Iteration) For i - 1,...,n, compute (F(Xi), F'(Xi))

(a) If F(Xi) C R, then discard Xi.

(b) If F'(Xi) ) 0 or F'(X I ) < 0, then compute R :- R ++ R(fXi) and discard X -.

(c) Otherwise, retain Xi .

30. (Termination or continuation) Denote the list of retained intervals by Lr.

(a) If Lr is empty, then the algorithm terminates with the exact value

R = R(fjX) (5.1)

of the range of f on x.

-5- -'7.....-
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(b) If r N or w(X1 ) c, then the algorithm terminates with the overestimate

R : R ++ F(X1 ) ++ ... ++ F(X ) D R(f;X) (5.2)
r%

of the range of f on X.

(c) Otherwise, each subinterval in Lr is bisected to form a new list Ln with n -

2r, and the algorithm returns to step 2*. ,,.

6. Remarks. The algorithm given in the previous section will terminate in a finite

number of steps with either the exact value of R(f;X) or an overestimate which is never

worse than

R = F(X 1 ) ++ ++ FIX n ) D R(f;X). (6.1) c.

In general, (6.1) is a better approximation to R(f;X) than F(X) because of the convergence

of united extensions to the range of a continuous function (1].

As a byproduct of the calculation when an overestimate is produced, the intervals

X. .....Xr which are retained at the final step may contain critical points of f, that is,

points at which f'(x) = 0. This information may be useful in optimization problems.

Furthermore, if the list of retained intervals is nonempty, then the value R D R(f;X)

returned by the algorithm is definitely known to be an overestimate, while if the list of

retained algorithms is empty, then this value is exact (modulo outward rounding). Thus,

the algorithm itself indicates the type of result (exact or an overestimate) it obtains.

The knowledge that R is an overestimate and the list of retained intervals can be used to

refine the calculation of R(f;X) further, if desired. Some idea of the quality of the

overestimate can be obtained by comparing the value of R before calculating (5.2) with the

final result.

7. Numerical results. Numerical results were computed for the following functions,

using the Pascal-SC program given in the following section.

-6-
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f (x) - x -X, (7.1)

f2 (x) x.x, (.2..

f (x) = (x - 1).(x + 3) (73) A3 (x + 2)

f4 (x) x/x. (7.4)

a. For X C [a,b], the naive interval extension F (X) = X - X of f, gives F1 ((a,b]) -

Es - b, b - a], while the algorithm gives R - (0,0] - R(fI;X) for arbitrary X.

b. For symmetric intervals X = [-s,s], the algorithm gives the exact value R [0,s 2 ]

R(f2; [-s,s]), while F2 ([-s,s]) ( -ss].(-s,s] .a In case X - [-r,s] is

nonsymmetric interval containing 0, the result of the algorithm can be of the form R

2 2[-E, max{r ,s21, where c > 0 is small, with a message that a small interval containing 0

can contain a critical point of f2. For example, for X = f-7,8], one has

F2(X) X.K E (-56, 64] (7.5)

* while the algorithm gives

R ,= [-3.lxlO 64] (7.6) -

with a notation that there may be a critical point of f2 in the retained interval

[-1.63x10-9 , 1.87xl109 ]. In all other cases, the algorithm gives the exact result. EvenL

if X is nonsymmetric about 0, the algorithm will give the correct result if 0 is a

bisection point.

c. The function f3 is actually monotone increasing, but has a pole at

x = -2. The algorithm will sense the monotonicity of f3 and give correct results if X is

subdivided a sufficient number of times. The results are much better than the naive .-. .

-7 - "'5';'-" 5*"
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interval extension F WX (X -1).(X + 3)/(X + 2) when one of the endpoints of X is close
3I

to -2. For example, for X [ -1.9, 98],

F (X) -[-2929, 97970], (7.7)

3.
while the algorithm gives

R [ -31.9, 97.97]. (7.8)

For X -[-1.999999, 98],

-[-3.03xI0
8, 9.797X10 W (7.9)

while the algorithm gives

R -[-3000002, 97.97]. (7.10)

Finally, for X =[-1.99999999999, 98], which has a lower endpoint as close to -2 as

possible in 12-digit decimal arithmetic, one gets

F 3 MX [-3.03xI1 , 9.797x10 14] (7.11)0

while the algorithm gives

pR [ -300000000002, 97.97] (7.12)

d. The algorithm does not give good results for f 4 (x) =x/x, because it determines

*that every subinterval of X possibly contains a critical point of f 4 (which in fact is

true, since f (x) =-1 is constant, and f I (x) =-0). Thus, the algorithm computes R [ 1,1)
4 4 '. -

initially, and the final value is determined only by the united extension (6. 1) Of



_ ,~.-. - 4.

course, the result is generally better than the naive interval extension F4 (X) - X/X

evaluated on the entire interval X, but is still usually a gross overestimate. For

example, for X- (0.002, 2].

F4(X) [0.001, 1000] (7.13)

while the algorithm gives

R [ (0.203, 4.903], (7.14)

which is still not a very good approximation to [1,1], even though it is much better than

(7.13). Of course, the user is warned that the result may not be good by the fact that all

subintervals are retained. Other methods usually give no warning when gross overestimates

are produced. One way to improve the algorithm in this case, since interval extensions of

derivatives are available, would be to use mean-value forms

F(Xi) - m(Xi) + F'(Xi)-(X - m(Xi)) (7.15)

to obtain interval extensions F of f on subintervals Xi, instead of obtaining them by

straightforward evaluation.

S. A Pascal-SC program. The program written below was designed to be general, so

that the user needs to supply only subroutines for evaluation of the function f in ordinary

interval arithmetic (IFEVAL) and in interval differentiation arithmetic (IDFEVAL). The

source code for these subroutines should be located in the files FEVAL.FUN. Examples of

these subroutines for the functions discussed in §7 are given in §10.

The operators for interval differentiation arithmetic given in §9 include only the

basic arithmetic operators for type IDERIV. For a complete computational system, operators

for mixed arithmetic between types INTEGER, REAL, and IDERIV should be included, as well as '

standard functions (3].

-9-

0% ..................- . ..".

-A~ ° ' ,.'.-.- --....9p f • . •. . ... .



47- W.- -Z K.. M. 7%----- 7- TV -. Z 4- W- - r

The number of subintervals allowed in a list in set by the constant DIN in the

program, which cnbe changed by the user. The size of the smallest subintervals is F

similarly controlled by the number LIMIT of bisections allowed. Thus, if LIMIT =L, then .--

6=2 *w.(X), C8. 1)

where w(X) =b -a is the width of the original interval X [a,b] . The source code for

the Pascal-SC program follows:

PROGRAM IRANGE (INPUT, OUTPUT);

CONST DIM = 256; (*maximum number of subintervals C

LIMIT = 321 ( Maximum number of bisections C

TYPE INTERVAL =RECORD INF ,SUP :REAL END

IDERIV =RECORD X, PRIME: INTERVAL END;

DIMTYPE =1..DIM;

STACICTYPE = RECORD INT:INTERVAL;FUN:IDERIV END;

VAR X,RF,BEST,WORST: INTERVAL;

F: IDERIV;

I,NA,NB,LIM: INTEGER;

A,B: ARRAY(DIMTYPE]OF STACKTYPE; (CA is the list of intervals to

be examined, B is the list of

retained intervals C

MX: REAL;

$INCLUDE INTERVAL.PAK; (CMakes interval arithmetic available C

$INCLUDE IDERV.PAK; (CInterval differentiation arithmetic '

PROCEDURE IOUT(X: INTERVAL); (CPrints endpoints in standard format C

BEGIN

WRITE( ' V,X.INF,', ',X.SUP, ] '); -

END;

-10- .-. ~=
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$INCLUDE FZVAL.FUNg ( Evaluation of the function in interval and m
and interval differentiation arithmetic 0

FUNCTION P)AF(L,Gt REAL): INTERVALY

(Bounds the range of a monotone function which assumes its least

value at L and its greatest value at G. 0

VAR D,U: INTERVALi

BEGIN

D:.INTPT(L);U:-INTPT(G);

D:-IFEVAL(D) ;U:..IFEVAL(U)i

D.SUP:-U.SUP;

RMF:-sD

END;

FUNCTION MID(X: INTERVAL): REAL; ( Calculates midpoint of an interval)

VAR A,B: ARRAY(T. .210F REAL;

BEGIN

All] :X.INF;B(l] :O.5;

A[2 :-X.SUP;B[21:05

?410:.SCALP(A,B,O)

END;

BEGIN (0Program IRANGE 0

WRITELN('Enter initial interval X%')i

IREAD(INPUT,X);

WRITE(' X - 1);IOUT(X);WRITELNI

F:-IDFEVAL(X);

WORST: F.X;

IF (F.PRIMqE.INP >- 0) THEN RF:-RF(X.INF,X.SUP)

ELSE IF (F.PRIME.StIP <- 0) THEN RF:-RF(X.SUP,X.IN1)

ELSE

-MUM-



BEGIN (F is not monotone *

NA:-1,LIM:..O,

AD(I .INT:.XIA1].FUN:F,

14X:-MID(X)l

X:-INTPT(HX)l

BEST:-IRVAL(X)i

WHILE ((NA > 0) AND (NA <- DIN DIV 2) AND (L114 < LIMIT)) DO

BEGIN (* WHILE)

LIH:-LIM+1 ,NB:0,l

FOR 1:-l To NA Do

BEGIN (* STACK B)

MX: 4ID(A [I] INT) I

NB:-NB+1;

B[NB] .INT.INF:-A[I] .INT.INFp

B[NB] .INT.SUP:-M;

B(NB] .FtN:-IDFEfVAL(B[NB] .INT),

NB:-NB+1;

B[NB] .INT.StIP:-A[I] .INT.StlPj . %*

B(NB] .FUN:-IDFEVAL(B[NB] .INT);

ENDi (* STACK B *

NA:0, 4.

FOR 1:-l TO NB Do N

BEGIN (* UNSTACK B 4

IF NOT (B[I].FUN.X <- BEST)

THEN IF (B[I].FUN.PRIHE.INF >- 0)

THEN BEST:-BEST+*RtNF(B[I].INT.INF,B[I].INT.SUP)

ELSE IF (B(I].FUN.PRIHE.SUP <- 0) A.*.

THEN BEST:-BEST+RF(BI].INT.SUP,B(IJ.INT.INF)

A'. ** ~* **.*..* .. -. . . . . ... - .'I%
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ELSE

BEGIN ( ZSTACK A )

NA1.NA+IjA[NA]: -B[]

END; (* RZSTACX A '

ENDi (* UNSTACK B '1

RF: -BSTi

FOR 1:-1 TO NA DO RP:-RF+*AIj.FUN.X,

,ND1 (* W ILZ')

IF NA > 0 ThEN

BEGIN (* NA > 0 '

RI:-BEST, ,

WRITIL(IFunction my have critical points in:')"

FOR I:"1 TO NA DO

BEGIN

WRITE('A[',I:2,'] - ')IOUT(A[I.INT)WRITELNj

RP:1RF+*A[] .FUN.X

ENDr ('NA > 0)

ENDI ( F is not monotone ')

WRITELN ('Naive interval arithmetic gives:');

WRITEC' F(X) - ')WIOUT(WORST)WRITELN,

WRITENO The algorithm gives:'),

WRITEC' F(x) - '),IOUT(RP),WRITELN

END. (* Program IRANGE ')

9. The operators for interval differentiation arithmetic. The six basic unary and

binary arithmetic operators for type IDERIV are located in the file IDERIV.PAK, which also

includes the call to the interval library for the function ISCALP to compute the interval

scalar product.

N1.
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TYPE IVECTOR - ARRAY(I..2]OF INTERVAL;

FUNCTION ISCALP ( VAR A,B: IVECTORi DIM: INTEGER): INTERVALi

EXTERNAL 88; (* Interval scalar product *)

OPERATOR + (U: IDERIV) RES: IDERIV;

BEGIN

RES: -U

END;

OPERATOR - (U: IDERIV) RES: IDERIV;

BEGIN .- -

% U. X: -U. X;

U. PRIME: -- U. PRIME;

RES: -U

END; '.'

OPERATOR + (U,V: IDERIV) RES: IDERIV;

BEGIN

U. X: -U. X+V. X;

U • PRIME: -U. PRIME+V. PRIME;

RES:-U

END;

OPERATOR - (U,V: IDERIV) RES: IDERIV;

BEGIN

U.X:-U.X-V.X;

U. PRIME: U.PRIME-V.PRIME"

RES:U -

END;

-14-
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% b

* OPERATOR *(tJ,V: IDERXV) RES: IDERIVj

VAR AB: IVECTORi

BEGIN

A [ 11: 4. X iB [ IV.PRINS i

A[2 :-V.X,3[21 :V.PRNMg

* ~U.PRIN:-ISCALP(A,B,2); I,

U.*X: U *V . X

ENDi

OPERATOR /(U,V: IDERIV) RES: IDERIVi

VAR A,B: IVECTORi

C: IDERIVI

BEGIN

C.*X :-U. X/V. Xi

A[l] :-INTPT(1)BE11]:U.PRIME;

A(2] :.-C.XmB[2 :-VPRI14E;

C.PRIME:-ISCALP(A,l, 2 )/V.Xi

RES:-C

END;

10. Example function subroutines. (Contents of the file FEVAL.FVN.)

(a) f Wx - x - X.

FUNCTION IMEAL(X INTERVAL): INTERVALt

BEGIN

IFEVAL :X -X

END;

%%



FUNICTION4 IDFEVAL(X3 IDMRX): IDERIvI

BEGIN

IDFEVAL :- X - X

END;

(b) f Wx - X.X.

FUNCTION IFEVAL(X INTERVAL): INTERVAL;

BEGIN .

IFIVAL :X*X

FUNCTION IDFEVAL(X: IDERIV): IDERIVI

BEGIN

IOFEVAL X*X

END

(c) f(x W (x -1).(x + 3)/(x + 2).

FUNCTION IFEVAL(X: INTERVAL): INTERVALI

BEGIN

IFErVAL ( X- 1)*(X + 3)/(X + 2)

END;

FUNCTION IDFEVAL(X: IDERIV): IDERIV;

VAR ONE,TWOoTHREE: IDERIV; .

BEGIN

ONE.X :-INTPT(1h ONE. PRIME INTPTCO)i

TWO.X :INTPT(2)TWO.PRIME :-INTPT(O);

THREE.X :INTPT(3);THRZE.PRIM :- INTPT(O);

IDFEVAL :(X ONE)*(X + THREEg)/(X + TWO) K

(d) f Wx -X/X.

4.

-16-
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FUNCTION IflVAL(Xt II4TZRVAL): INTERVALs

BEGIN

IF3VP.L te /X

ENDi

FUNCTION IDFEVAL(X: IDERIV): IDRRIVI .;

BEGIN

IDFEVAL :-X/X

mmi

11. Acknowledgement. The author is grateful to Prof. Karl Nickel for helpful
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